
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 59, NO. 9, SEPTEMBER 2011 3347

Adaptive Aperture Partition in Shooting and
Bouncing Ray Method

Yu Bo Tao, Hai Lin, and Hu Jun Bao

Abstract—The shooting and bouncing ray (SBR) method may
give rise to a divergence problem when ray tubes intersect dis-
continuous parts of the target, such as the boundary, and this af-
fects the accuracy to some extent. This paper proposes an adap-
tive aperture partition algorithm to solve this problem. The pro-
posed algorithm adaptively splits the virtual aperture into con-
tinuous irregular beams instead of discrete uniform ray tubes ac-
cording to the geometry of the target during the recursive beam
tracing. These beams form a beam tree, the level of which repre-
sents the number of reflections. Geometric optics is applied to the
representative propagation path of each leaf beam to obtain the exit
field, and then physical optics is used to evaluate each leaf beam’s
scattered field. The proposed algorithm could generate the conver-
gent solution of the SBR method when the ray-tube size tends to-
ward infinitesimal. Additionally, this paper describes the beam-tri-
angle intersection in detail and utilizes the kd-tree to accelerate
the beam-target intersection. Numerical experiments demonstrate
that adaptive aperture partition can greatly improve the accuracy
of the SBR method, and the computational efficiency can be also
significantly enhanced in several applications, such as the RCS pre-
diction in the THz band.

Index Terms—Adaptive aperture partition, beam tracing, beam-
triangle intersection, kd-tree, radar cross section (RCS), shooting
and bouncing ray (SBR).

I. INTRODUCTION

T HE prediction of the high-frequency scattering from ar-
bitrarily shaped targets is of growing importance for the

simulation of radar systems, such as the radar cross section
(RCS) and inverse synthetic aperture radar (ISAR) applications.
The shooting and bouncing ray (SBR) [1], [2] method is one of
the principal ways to predict the scattered field of electrically
large and complex targets with great accuracy and efficiency.

In the SBR method, the incident plane wave is described by
means of a uniform grid of ray tubes, and the density of ray
tubes should be greater than about ten rays per wavelength in
view of the convergence of results. Four corner rays and the
central ray of each ray tube are recursively traced to obtain the
exit positions. The exit field of each ray tube is also traced and
calculated during the central ray tracing according to the law
of geometrical optics (GO) [3]. The field scattered from each

Manuscript received April 30, 2010; revised December 20, 2010; accepted
January 15, 2011. Date of publication July 12, 2011; date of current version
September 02, 2011. This work was supported in part by the National Hi-Tech
Research and Development Program of China under Grant 2002AA135020.

The authors are with the State Key Laboratory of CAD&CG, Zhejiang Uni-
versity, Hangzhou 310058, China (e-mail: taoyubo@cad.zju.edu.cn; lin@cad.
zju.edu.cn; bao@cad.zju.edu.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAP.2011.2161435

Fig. 1. The illustration of the ray-tube divergence problem. The target is three
orthogonal rectangles with an electrically small structure on the middle rec-
tangle, and its projection on the virtual aperture is the gray polygon. Two corner
rays of the ray tube� do not intersect the target, the standard approach is to dis-
card�. Actually, the intersected area of� is shown in the enlarged ray tube�
on the right. For the ray tube�, the standard approach uses the four intersection
positions to construct an equivalent ray tube, as shown in the enlarged ray tube
� . However, the intersected area of the ray tube � is shown in the enlarged
ray tube � . It is more complex to process the divergent ray tubes � and�.

ray tube can be evaluated through physical optics (PO), and the
scattered field of the target is the sum of all scattered fields of
ray tubes.

The independence of corner/central ray tracing makes the
SBR method easily implementable and highly effective. How-
ever, it may result in a divergence problem, i.e., the ray tube di-
verges in the recursive ray tracing, as illustrated in Fig. 1. This is
different from the divergence factor in the original SBR method
[1], which describes the change in the field magnitude with the
size of the ray tube when it intersects the target defined by the
parametric surface. In this paper, the target is described in terms
of triangles, and the divergent ray tube may partially intersect
the target or may be reflected without one dominant propaga-
tion direction. Concretely, when any one of corner rays does
not intersect the target, such as the ray tube in Fig. 1, this
ray tube is divergent. The current approach to processing diver-
gent ray tubes is to discard these invalid ray tubes directly, not
including them in the calculation of the scattered field. How-
ever, the simple approach would affect the accuracy of the SBR
method, especially when the frequency is down to 500 MHz [4].
Although the high-frequency approximation would not be accu-
rate enough in the low frequency, the divergence problem may
be another factor for inaccurate results. This is because the size
of ray tubes is so large enough that the scattered fields of these
discarded ray tubes can not be simply ignored. More complexly,
ray tubes would diverge in the recursive ray tracing, and it is very
difficult to identify this divergence accurately due to the discrete
sampling, such as the ray tube , and in Fig. 1. Even if

0018-926X/$26.00 © 2011 IEEE

3348 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 59, NO. 9, SEPTEMBER 2011

the equivalent cross section of the ray tube is constructed from
the four intersection positions to calculate the scattered field, it
is still different from the actual scattered field, especially for the
ray tube and . Therefore, diverged ray tubes, whether it is
identified or not, would affect the accuracy of the SBR method.

The ray-tube divergence problem arises from the procedure
of the SBR method: first divide the grid into dense uniform ray
tubes, and then trace each ray tube individually. This pre-par-
tition procedure does not consider the geometry of the target.
Therefore, ray tubes may intersect the discontinuous area of the
target in the recursive ray tracing, such as the boundary and
the electrically small and complex part, and this leads to the
ray-tube divergence problem.

In this paper, we propose an adaptive aperture partition algo-
rithm based on beam tracing to solve the divergence problem.
The basic idea is to delay the virtual aperture partition until the
recursive beam tracing and divide the aperture into beams only
if necessary. A beam is a continuous volume of rays, while a ray
tube is simplified to five discrete rays (four corner rays and one
central ray) without taking into account the space in the ray tube.
Beam tracing was first introduced by Heckbert and Hanrahan [5]
in 1984. In computer graphics, beam tracing utilizes the geo-
metric coherence of rays, i.e., neighbor rays usually intersect
the same triangle of the target and have the same propagation
path, to improve the efficiency of ray tracing. Beam tracing has
been employed in antialiasing [6] and the calculation of exact
soft shadows [7]. In acoustic modeling, beam tracing has been
widely used to calculate exact sound propagation paths from the
source to the receiver in virtual environments [8], [9].

Beam tracing has also been applied in the radio propagation
prediction to find all exact propagation paths from a transmitter
to a receiver. Son and Myung [10] presented a ray tube tree
based on uniform geometrical theory of diffraction (UTD) for
quasi 3D environments. An enhanced three-dimensional beam-
tracing algorithm including diffraction phenomena has been de-
veloped by Bernardi et al. [11] to evaluate the field distribu-
tion in complex indoor environments. Recently, Kim and Lee
[12] presented the concept of ray frustums, which is similar to
the beam. They also introduced several acceleration techniques,
such as quad tree, for fast ray frustums traversal in the envi-
ronment. Compared to ray-tracing methods, these beam-tracing
algorithms eliminate reception tests and existence tests of prop-
agation paths, and improve the numerical efficiency and accu-
racy.

There have been several publications on how to partition the
virtual aperture more effectively. Suk et al. [13] presented a
multiresolution grid algorithm, which recursively subdivide the
divergent ray tube into four uniform children ray tubes until
the size of the divergent ray tube is less than the criterion. Al-
though the multiresolution grid algorithm greatly reduces the
initial number of ray tubes and accelerates the ray tracing of
the SBR method, it still suffers from the ray-tube divergence
problem, as the partition of the grid does not take into account
the geometry of the target. Weinmann [14] introduced a random
sampling strategy on the virtual aperture plane. For each sample,
a ray is constructed and recursively traced, and a equivalent ray
tube is generated at the intersection position to assess the scat-
tered field. Although it is obvious that using a ray to represent

a ray tube can avoid the divergence problem to a certain extent,
more additional samples are required to reduce the prediction
error. Recently, Xu and Jin [15] developed analytic tracing of
polygonal ray tubes for precisely calculating the illumination
and shadowing of triangles. However, they did not describe the
3D implementation in detail. For arbitrarily shaped targets, the
effective implementation of adaptive aperture partition requires
the exact understanding of the beam-triangle intersection. As a
result, we systematically discuss the procedure of the beam-tri-
angle intersection in this paper.

In addition, various acceleration techniques have been pro-
posed to reduce the computational time of the SBR method,
especially the ray tracing. Jin et al. [16] introduced the octree
to decrease the number of ray-triangle intersection tests. The
kd-tree has been proved as the best general-purpose acceleration
structure for ray tracing of static scenes in computer graphics
[17]. Therefore, Tao et al. [18] utilized the kd-tree to accelerate
the ray tracing of the SBR method, and they extended this work
to a GPU-based SBR method fully executed on the graphics pro-
cessing unit (GPU) [19] for fast RCS prediction. In this paper,
we also use the kd-tree to accelerate the beam-target intersec-
tion based on the work of a beam tracer [7]. The key difference is
that the beam in the beam tracer is a polygonal pyramid emitting
from a point source, while the beam here is a polygonal prism
launched from the virtual aperture with the same direction. It is
necessary, therefore, to adapt the existing beam tracing in com-
puter graphics to simulate the plane wave.

This paper is organized as follows. We first introduce
an overview of the proposed adaptive aperture partition in
Section II. The beam-triangle intersection and kd-tree beam
traversal are described in Section III, and this procedure gen-
erates a beam tree representing all possible propagation paths.
Section IV is dedicated to the use of the beam tree to predict
the scattered field of the target. The experimental results and
discussions are covered in Section V. Finally, the conclusions
are drawn in Section VI.

II. METHOD OVERVIEW

In the SBR method, the grid on the virtual aperture is divided
into dense ray tubes uniformly before the ray tube tracing, and
the ray tube is a square prism started from the virtual aperture. In
this paper, a beam is a quadrangular prism or a triangular prism
with an irregular cross-section, and a beam is marked as hit or
miss depending on whether it intersects the target. The initial
beam is launched from the virtual aperture, and the reflected
beam is started from the intersected area on the hit triangle.

Adaptive aperture partition is performed during beam tracing
and is described as follows. Once the incident direction of the
electromagnetic wave has been specified, we first construct the
polygonal virtual aperture perpendicular to the incident direc-
tion, which should be large enough to cover at least the projected
area of the target. The whole aperture as an initial beam is traced
in the space of the target. When the beam encounters the geom-
etry of the target, it is dynamically split according to the projec-
tion of the triangle and generates several irregular hit beams and
miss beams. The generated beam continues to be traced until it
hits the nearest triangle or exits the target. When the intersection
between the initial beam and the target is finished, the virtual

TAO et al.: ADAPTIVE APERTURE PARTITION IN SHOOTING AND BOUNCING RAY METHOD 3349

aperture has been adaptively partitioned and a group of primary
beams are generated. For each hit beam, the intersected area on
the hit triangle acts as the virtual aperture of the reflected beam.
The reflected beam is recursively traced and its virtual aperture
is also adaptively split until it exits the target or the number of
intersections is larger than the maximum order of the reflection.
The kd-tree can be used to accelerate the beam-target intersec-
tion. Finally, all hit beams form a beam tree.

With the beam tree, we can construct a representative propa-
gation path for each leaf beam. The exit field of each leaf beam
can be calculated by GO based on the representative propaga-
tion path, and the PO integral is applied to each leaf beam to
evaluate the scattered field of the target.

As the splitting lines are these projected edges of triangles
visible from the incident direction, each hit beam intersects only
one triangle. Thus, the virtual aperture is divided according to
the geometry of the target and adaptive aperture partition over-
comes the divergence problem. The fast generation of the beam
tree and electromagnetic computing based on the beam tree are
detailed in the following sections.

III. ADAPTIVE APERTURE PARTITION

Adaptive aperture partition is actually the process of the
beam-target intersection: the primary beams are the intersec-
tion result between the root beam and the target, while the
secondary beams are generated through the intersection of
the hit beam and the target. In order to describe the adaptive
aperture partition algorithm clearly, we first introduce the basic
beam-target intersection procedure, and then describe how to
accelerate this intersection procedure using the kd-tree.

A. Beam-Target Intersection

Since the target in this paper is modeled by triangles, the fun-
damental operation of the beam-target intersection is the beam-
triangle intersection. The beam-triangle intersection would split
the beam into the hit part and the miss part, which are equal to
the blocked part and the passed part of the beam. This intersec-
tion is similar to standard geometry set operations [5], [7], such
as the intersection and difference of two polygons.

In the beam-triangle intersection, the part of the triangle be-
hind the virtual aperture plane of the beam is first clipped and
the remaining part is projected onto the virtual aperture plane.
There are three simple cases that can be determined by checking
the relative position between the beam and the projected triangle
on the virtual aperture plane. When the beam is on the outside of
one edge of the projected triangle or the projected triangle is on
the outside of one edge of the beam, as shown in Fig. 2(a) and
(b), the beam does not intersect the triangle and the intersection
is terminated. When the beam is on the inside of all edges of the
projected triangle, as shown in Fig. 2(c), the beam is fully inside
the projected triangle. In this case, if the beam is the miss beam,
we simply mark the beam as the hit beam and record the inter-
section information, i.e., the intersected triangle and the distance
from each corner of the beam to the intersected triangle. Other-
wise, if the beam is a hit beam, we need to judge the order of
the previous intersected triangle and the current intersected tri-
angle from the direction of the beam, and the nearest triangle
is recorded in the beam. However, when two triangles pierce

Fig. 2. The illustration of three simple cases in the beam-triangle intersection.
The gray polygon is the projected triangle. (a) The beam is on one side of the
projected triangle. (b) The projected triangle is on one side of the beam, which
is a triangular prism. (c) The beam is fully inside the projected triangle.

Fig. 3. The illustration of the beam-triangle intersection. The dark gray triangle
is the projected triangle. The beam is iteratively split by each edge. The light
gray polygon in each step is the miss beam, and the final miss beam requires an
additional splitting indicated by the dashed line. The initial beam is split into
one hit beam and four miss beams.

each other, that is neither of the triangles is wholly closer to the
virtual aperture plane, and the beam should be split based on
the intersection line of the two triangles. Furthermore, there is
another simple case for the hit beam. If the current triangle is
wholly behind the intersected triangle of the hit beam from the
beam’s direction, i.e., the distances from corners of the beam
to the triangle are all further than its corresponding distances to
the intersected triangle, the beam is blocked by the intersected
triangle and does not intersect the triangle. In this case, there is
no need to perform the intersection between the hit beam and
the triangle.

When the relationship between the beam and the triangle does
not belong to the above simple cases, the beam and the pro-
jected triangle overlap on the virtual aperture plane. The clas-
sical Sutherlan-Hodgman polygon clipping algorithm [20] can
be used to compute the intersection of the beam and the triangle.
This algorithm deals with one triangle edge at one time. The cur-
rent edge splits the beam into two parts: the miss beam and the
hybrid beam, and the remaining edges only need to deal with the
hybrid beam. In some situations, the miss beam may not be gen-
erated during the triangle edge’s splitting. Finally, the original
beam is split into several beams, at least one hit beam and one
miss beam. It is worthwhile to point out that hit/miss here is rel-
ative to the current triangle. The generated miss beams have the
same intersection information with the original beam, while the
generated hit beams should update the intersection information.
The update procedure is the same as the case that the beam is
fully inside the projected triangle. Fig. 3 illustrates the splitting
procedure of the beam-triangle intersection. When the corner
number of the generated beam is larger than four, an additional
splitting is required to ensure that the corner number is less than
or equal to four for the consistency of beams.

The beam-target intersection performs the beam-triangle in-
tersection for all triangles iteratively. In this process, old beams

3350 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 59, NO. 9, SEPTEMBER 2011

Fig. 4. The illustration of the initial beam intersection with the right-angle di-
hedral corner modeled by four triangles. The initial beam is iteratively split by
each triangle from left to right. The dashed lines in each step are splitting lines
based on the projected edges of the current processed triangle (the dark gray
color), and the previous generated hit beams are indicated by the light gray color.
The intersection process of the initial beam and the first triangle is illustrated in
Fig. 3, and the hit beam � is generated. The second triangle splits two miss
beams and generates two hit beams � and � and three miss beams, while the
third triangle splits one miss beam and generates one hit beam � and three miss
beams. The final triangle splits two miss beams and generates two hit beams �
and � and four miss beams.

Fig. 5. The primary hit beams on the virtual aperture of the airplane from the
incident direction.

are split and new beams are generated gradually, and all cur-
rent beams including hit beams and miss beams continue the
beam-triangle intersection for the remaining triangles. Finally,
the virtual aperture is adaptively divided into irregular areas,
and a group of primary beams with these irregular cross-sec-
tions are generated. Among these beams, miss beams have no
intersection with the target, and each hit beam intersects only
one triangle of the target. As the triangles’ edges of the target
are all located at the splitting lines of the virtual aperture, adap-
tive aperture partition generates convergent beams and solves
the ray-tube divergence problem. The initial beam is the root
beam, and all hit beams form the first level of the beam tree.
Fig. 4 illustrates the intersection process of the initial beam with
the right-angle dihedral corner, and the initial beam is divided
into six primary hit beams. Fig. 5 shows primary hit beams on
the virtual aperture divided based on the visible triangles of the
airplane from the incident direction, and each hit beam inter-
sects only one visible triangle of the airplane.

For multiple reflections, we take the intersected area on the
hit triangle and the reflected direction of the hit beam as the
virtual aperture and the propagation direction of the reflected
beam. The reflected beams continue to perform the beam-target
intersection, and the only difference is that all generated miss
beams are hit-exit beams and should become sibling nodes of
the current reflected beams. As the virtual aperture of the re-
flected beam is adaptively divided according to the geometry of
the target, it also eliminates the divergence of the reflected beam.

Fig. 6. The illustration of the primary reflected beam intersection with the
right-angle dihedral corner. The left (right) three reflected beams and the parti-
tions on their virtual apertures are shown in light (dark) gray color on the left
(right), and the dashed lines on the virtual aperture are splitting lines. The pri-
mary hit beam � intersects triangles � and � , and is split into two secondary
hit beams � and � , while the primary hit beams � �� � only intersects the
triangle � , and generates one secondary hit beam � �� �. The primary hit
beam � intersects the triangle � and generates one secondary hit beam � ,
and it also intersects the triangle � and generates one secondary hit beam �

and one miss beam � . The primary hit beam � �� � only intersects the tri-
angle � , and generates one secondary hit beam � �� � and one miss beam
� �� �.

The reflected beam is recursively traced until the beam exits the
target or the number of intersections is larger than the maximum
order of the reflection. Fig. 6 illustrates the reflected beams and
the partition on their virtual apertures of the right-angle dihedral
corner, and the reflected beams are constructed based on the pri-
mary hit beams in Fig. 4.

Finally, all hit beams constitute a beam tree. The root (zero
level) of the beam tree is the initial beam without any splitting,
and the nodes in the level of the beam tree are the th-reflec-
tion hit beams. As the virtual aperture of each level is adaptively
divided based on the geometry of the target, new beams are dy-
namically generated to avoid the divergence problem. Fig. 7 de-
picts a beam tree generated from the right-angle dihedral corner.
The leaf nodes are the exit beams, and electromagnetic com-
puting is only performed on these beams.

B. Kd-Tree Beam Traversal

The beam-target intersection discussed above adaptively
splits the virtual aperture based on the geometry of the target
during the recursive beam tracing, and it eliminates the diver-
gence problem in a unified manner. However, all triangles are
required to be projected on the virtual aperture of each beam
to perform the beam-triangle intersection. It is, therefore, very
time-consuming when the geometry of the target is complex.
Actually, this efficiency problem of the beam-target intersection
is analogous to that of the ray-target intersection in the SBR
method. Various acceleration techniques have been proposed
to improve the efficiency of the ray-target intersection, such as
the octree [16] and kd-tree [18]. In this section, we introduce
the kd-tree to accelerate the beam-target intersection. This
basic procedure is based on the traversal algorithm [7], which
is used to calculate the exact soft shadows for point lighting.
The essential difference is that beams in the SBR method are
directional beams with the same ray directions instead of beams
emitting from a point source.

The kd-tree is a simplified version of the binary space par-
titioning tree and has been used in the SBR method [18], [19].
The octree, which is common in computational electromagnetic
[21], recursively uses the middle point of the extend in each di-
rection as the splitting position to subdivide the target space into

TAO et al.: ADAPTIVE APERTURE PARTITION IN SHOOTING AND BOUNCING RAY METHOD 3351

Fig. 7. The illustration of the beam tree generated from the right-angle dihedral
corner. The beams in the first and second level correspond to the primary hit
beams and the secondary hit beams as shown in Figs. 4 and 6, respectively. The
miss beams generated in Fig. 6 are sibling nodes of the primary hit beams in
Fig. 4. A representative propagation path from the leaf beam � to the initial
beam � �� � � � � � is indicated in a bold line.

eight equal sub-spaces. The kd-tree takes into account the tri-
angle distribution in the target space to search for the optimal
splitting axis and position based on the ray-tracing cost estima-
tion model, and recursively employs the optimal axis-perpendic-
ular plane to divide the target space into two uneven axis-aligned
sub-spaces. The ray traversal algorithm starts at the root node
of the kd-tree and searches for the nearest intersected triangle
of the ray in the target, and most rays could find the intersec-
tion in the first leaf nodes visited [17]. The construction proce-
dure of the kd-tree has been introduced in [18], and Pharr and
Humphreys’ book [22] gives the detailed description on the ray
traversal algorithm in the kd-tree.

The beam traversal procedure is based on the ray traversal
procedure, as a beam can be taken as three/four corner rays in
the kd-tree traversal. However, we also need to take into account
other rays in the beam, and there are several differences between
the two procedures: (1) the choice of the child node to traverse,
(2) the maintenance of the stack, (3) the beam-triangle intersec-
tion in the leaf node, (4) the termination condition of the tra-
versal. The beam-triangle intersection in the leaf node has been
introduced in the Section III.A, and the Appendix provides de-
tailed descriptions about other three differences and pseudocode
for the interested reader.

Each beam is recursively traced based on the proposed kd-tree
traversal algorithm. The use of the kd-tree can significantly ac-
celerate the beam-target intersection, as it eliminates a large
number of unnecessary beam-triangle intersections. In addition,
the virtual aperture of the beam is split only by visible triangles,
not all triangles, and this reduces the final number of hit beams.

IV. BEAM TREE BASED ELECTROMAGNETIC COMPUTING

The beam-target intersection adaptively splits the virtual
aperture of each beam, and finally it generates a beam tree. A
leaf beam is a group of rays with the same propagation path,
and a beam tree contains all possible propagation paths. The
propagation path here refers to all rays of the leaf beam are
reflected by the same sequence of triangles of the target.

The scattered field of the target can be obtained by evaluating
the scattered fields of leaf beams only. We calculate the cen-

Fig. 8. The illustration of backward ray tracing. The beam tree of the right-
angle dihedral corner is displayed in Fig. 7. The representative propagation path
of the leaf beam � is � � � � � .

tral position of the leaf beam’s virtual aperture, and employ
backward ray tracing to produce a representative ray path for
each leaf beam. More specifically, the origin and the direction
of the backward ray are the central position and the inverse
propagation direction of its parent beam, respectively. The back-
ward ray is tested for intersection with the virtual aperture of
its parent beam, and it obtains the intersection position . The
origin and the direction of the backward ray are replaced with
the intersection position and the inverse propagation direc-
tion of the corresponding parent beam, respectively. The back-
ward ray is recursively traced until it hits the virtual aperture of
the root beam and produces the final intersection position .
Thus, the representative ray path of the leaf beam is from
to : . Fig. 8 displays an ex-
ample of backward ray tracing in the right-angle dihedral corner,
and its beam tree is illustrated in Fig. 7.

Geometric optics is applied to each intersection of the repre-
sentative ray path to evaluate the exit field of the leaf beam. The
reflected field is calculated based on the field before the inter-
section and the geometric information of the intersected triangle
as follows:

(1)

where

, and . The

vector is the propagation direction before the intersection,
is the propagation direction after the intersection, and is

the normal of the intersection. The incident field is and the
reflected field is . The detailed formulas
about the reflection coefficients are explained in [1], [3].

Since the leaf beam is reflected by a group of triangles, the
exit field on the leaf beam has the same amplitude and a linear
phase variation with the exit field of the representative ray. The
scattered field of the leaf beam can be approximated by the PO
integral as follows:

(2)

3352 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 59, NO. 9, SEPTEMBER 2011

Fig. 9. The VV-polarization comparison of uniform aperture partition, adap-
tive aperture partition and MLFMM results for a simple 1 m� 1 m square patch
at 500 MHz.

where is the observation direction. The can be
expressed as the exit field of the polygon

(3)

Generally, the coefficients and in the EH formulation (0.5)
provide a better result [2]. The PO integral on the planar aperture
can be approximately in a more computable form [2], and the
shape function can be solved through the 2D Fourier transform
[23]. The scattered field of the target is generated by summing
all leaf beams’ scattered fields.

V. RESULTS AND DISCUSSION

Several numerical experiments were performed to verify the
accuracy and efficiency of the proposed adaptive aperture par-
tition. The original partition of the SBR method is referred to
as uniform aperture partition in this section. In our implemen-
tation, the identified divergent ray tubes are simply discarded
in uniform aperture partition. These experiments were tested
on an Intel Core 2 Quad Q9550 (2.83 GHz) processor with an
NVIDIA GeForce 285 GTX (CUDA Toolkit 3.0), and at most
fifth-order reflection is considered. The target is described by
triangles and meshed according to the geometric error instead
of the wavelength. Thus, it is desirable that the flat part is mod-
eled by large triangles, as this reduces the beam-triangle inter-
sections and avoids many unnecessary beam splittings.

A simple 1 m 1 m square patch is used to analyze the in-
fluence of the ray-tube divergence problem on the accuracy of
the SBR method. Fig. 9 shows the VV-polarization RCS result,
which are predicted using an angular resolution of 1 at 500
MHz frequency with . Adaptive aperture partition ac-
tually generates two large hit beams covering the whole patch,
and the result is equal to the PO integral of the total patch. The

Fig. 10. The VV-polarization comparison of uniform aperture partition, adap-
tive aperture partition and MLFMM results for a simple 1 m� 1 m square patch
at 3 GHz.

result of uniform aperture partition at is largely different
from the one of adaptive aperture partition. The ray-tube diver-
gence problem severely affects the accuracy in this case, since
ray tubes that intersect the boundary of the patch are not in-
cluded in the calculation of the scattered field and the ray-tube
size is considerable large compared to the target. The
result of uniform aperture partition at is also shown in
Fig. 9. In this case, the relative error due to the ray-tube diver-
gence problem is greatly reduced, and the result tends toward the
one of adaptive aperture partition. The result of adaptive aper-
ture partition which eliminates the ray-tube divergence problem
is more accurate than the one of uniform aperture partition in
the SBR method. In other words, adaptive aperture partition can
generate the convergent solution of the SBR method when the
ray-tube size tends toward infinitesimal. The result of the multi-
level fast multipole method (MLFMM) is used as a comparison
to verify the result. As PO is mainly valid in the nearby direction
of specular reflection and it is also not accurate enough in the
low frequency, there are some deviations between the results of
the SBR method and MLFMM. However, the result of adaptive
aperture partition matches the MLFMM result and is more ac-
curate than the one of uniform aperture partition.

With the increasing frequency, the SBR method is highly ef-
fective in predicting the scattered field of arbitrarily shaped tar-
gets. However, the ray-tube divergence problem still affects the
accuracy of the SBR method. Fig. 10 shows the VV-polarization
RCS result for the same square patch, which are predicted using
an angular resolution of 1 at 3 GHz frequency with .
As can be observed clearly from Fig. 10, there are obvious dif-
ferences between the results of uniform aperture partition at

and adaptive aperture partition, and the result of uniform
aperture partition at tends to the one of adaptive aper-
ture partition. Adaptive aperture partition generates the optimal
result of the SBR method and its result is more similar to the
MLFMM result. In addition, the result of uniform aperture par-
tition depends on the boundary of the virtual aperture and the
partition criterion, and there are differences among results under
different configurations of the virtual aperture. In contrast to

TAO et al.: ADAPTIVE APERTURE PARTITION IN SHOOTING AND BOUNCING RAY METHOD 3353

Fig. 11. The VV-polarization comparison of adaptive aperture partition, adap-
tive aperture partition � TW-ILDC and MLFMM results in the bistatic RCS
calculation for the pencil at 3 GHz.

uniform aperture partition, the result of adaptive aperture par-
tition does not rely on the boundary of the virtual aperture and
the order of partition. Thus, adaptive aperture partition is more
stable than uniform aperture partition. The agreement between
adaptive aperture partition and MLFMM is less good for angles
higher than 35 , as the observation direction in these angles de-
viates from the specular reflection direction, and PO could not
evaluate the scattered field accurately in this case.

The pencil illustrated in Fig. 11 is used to verify the accuracy
of adaptive aperture partition in the SBR method. It was first em-
ployed by Hastriter [24] to verify the Fast Illinois Solver Code
(FISC), and then it was also used to verify the effectiveness
of truncated-wedge incremental-length diffraction coefficients
(TW-ILDC) [25], [26]. The incident direction is at and

, and the observation directions are from
to on the plane using an angular resolu-
tion of 1 . These calculation parameters are the same as [26].
Fig. 11 illustrates the bistatic VV-polarization RCS comparison
of adaptive aperture partition and MLFMM results at 3 GHz.
When specular scattering is not the dominant mechanism, the
edge-diffraction effect could not be ignored. The visible edges
can be identified by checking the boundaries of primary hit
beams, as the projected triangles’ edges are the splitting lines
of beams. Then, TW-ILDC is applied to these visible edges
to evaluate the edge diffracted field, and the detailed formulas
of TW-ILDC are described in [25]. It is clear that the SBR
TW-ILDC result matches well the MLFMM result, and the SBR

TW-ILDC result is nearly the same as the one in [26]. The de-
viation in observation angles higher than 300 may be due to the
pencil-tip diffraction, which is not included in our current im-
plementation.

The trihedral corner reflector, which is a typical benchmark
target, is used to verify the high frequency multiple-bounce scat-
tering [2]. The geometry of trihedral corner reflector is depicted
in Fig. 12, three right-angled triangles with the side length 1
m. The 91 equal-spaced incident directions are from
to on the plane. The monostatic HH-polar-
ization RCS comparison of uniform aperture partition, adaptive

Fig. 12. The HH-polarization comparison of uniform aperture partition, adap-
tive aperture partition and MLFMM results in the monostatic RCS calculation
for the trihedral corner reflector at 3 GHz.

aperture partition, and MLFMM results at 3 GHz is illustrated
in Fig. 12. The result of uniform aperture partition at is
smaller than the one of adaptive aperture partition due to the
ray-tube divergence problem. A good agreement between the
adaptive aperture partition and MLFMM results further verifies
the accuracy of adaptive aperture partition in the SBR method.

The impact of the ray-tube divergence problem is more ob-
vious for electrically large and complex targets. We calculate
the scattered field of the airplane as shown in Fig. 5 to show
such influence on accuracy. The size of the airplane is approxi-
mately 14 m 17 m 4.5 m, and the structure of the airplane is
much more complex. The 181 equal-spaced incident directions
are from to on the plane. Fig. 13
shows the RCS comparison of adaptive aperture partition and
uniform aperture partition results at 3 GHz. It can be seen ob-
viously that the result of uniform aperture partition is slightly
smaller than the one of adaptive aperture partition due to the
discarding of divergent ray tubes. There is no comparison with
the MLFMM result, as the MLFMM becomes unusable for the
airplane due to the limited computational resources.

Table I shows the total computational times of all incident an-
gles using CPU uniform aperture partition, GPU uniform aper-
ture partition, and the proposed adaptive aperture partition for
experimented targets. As demonstrated in [19], GPU uniform
aperture partition is at least 30 times faster than CPU uniform
aperture partition for most cases. Especially, it fully exploits the
potential of GPU at , achieving an acceleration ratio about
100 for the trihedral corner reflector and airplane. As the trihe-
dral corner reflector has a very simple geometric shape, adaptive
aperture partition only needs 0.078 seconds for all incident an-
gles, while the computational times of CPU uniform aperture
partition at and are 18.03 and 1974.76 seconds, re-
spectively. Adaptive aperture partition is even faster than GPU
uniform aperture partition for this target, about 2 and 60 times
faster at and , respectively. Thus, adaptive aperture
partition is very well suited to the target with large flat regions,
such as the patch and trihedral corner reflector.

3354 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 59, NO. 9, SEPTEMBER 2011

Fig. 13. The comparison of uniform aperture partition and adaptive aperture partition results in the monostatic RCS calculation for the airplane as shown in Fig. 5
at 3 GHz. (a) VV-polarization result, (b) HH-polarization result.

TABLE I
THE COMPUTATIONAL TIMES OF THE CPU UNIFORM APERTURE PARTITION,

GPU UNIFORM APERTURE PARTITION [19], AND ADAPTIVE APERTURE

PARTITION FOR THE RESULTS IN FIGS. 9–14 (SEC)

In computer graphics, beam tracing is much slower than ray
tracing for models of complex structures, especially when the
pixel size on the sampling plane is larger than the average vis-
ible triangle size. In the SBR method, adaptive aperture par-
tition also has such a problem. The beam number is propor-
tional to the number of visible triangles. In our experiments,
the average primary hit beam number/visible triangle number is
292609/33874, 5/3, and 16251/1128 for the targets in Figs. 11,
12, and 13, respectively. This ratio reaches up to 14.4 for the
airplane. The reason is that as visible triangles split the beam
iteratively, the area on the virtual aperture corresponding to one
visible triangle may be already split into several beams before
encountering this visible triangle. This also explains why adap-
tive aperture partition may be slower than uniform aperture par-
tition in some situations, such as the pencil and the airplane.
As shown in Table I, adaptive aperture partition is much slower
than CPU uniform aperture partition at , as it spends addi-
tional computational burden on the generation of a high number
of beams and the size of many beams would be much smaller
than ray tubes in uniform aperture partition. However, the ac-
curacy of adaptive aperture partition is greatly improved com-
pared to uniform aperture partition at . Although the result
of uniform aperture partition at is very similar to the one
of adaptive aperture partition, the computational time is terribly
long due to a large number of ray tubes. For example, the total

computational time of CPU uniform aperture partition at
is about 100 times slower than uniform aperture partition at
for the airplane, and adaptive aperture partition is faster than
CPU uniform aperture partition at for the pencil and air-
plane. Although the performance of adaptive aperture partition
is much worse than GPU uniform aperture partition, adaptive
aperture partition can also explore the GPU power for accelera-
tion, which would be our future work.

Another feature of adaptive aperture partition is that the par-
tition of the virtual aperture is insensitive to the incident fre-
quency, and it is only related to the geometry of the target. This
is particularly useful for the high-resolution range and inverse
synthetic aperture radar (ISAR) applications, since we only need
to generate one beam tree for all frequencies in the bandwidth.

In the terahertz (THz) band, the electrical size of the target is
extremely large, and the number of ray tubes in uniform aper-
ture partition is also significantly increased. Thus, the computa-
tional time is seriously affected by such a large number of ray
tubes [27]. Adaptive aperture partition is very suited to the THz
band, as it is no concern of the frequency. For instance, Fig. 14
shows the RCS result of the pencil at 1 THz, and other compu-
tational parameters are the same to the one in Fig. 11. As can
be seen from Table I, the computational time of adaptive aper-
ture partition is almost the same for all frequencies, 822.40 sec-
onds, while the computational time of GPU uniform aperture
partition at is 3384.81 seconds, about 4 times slower, and
its computational time at is extremely time-consuming,
more than one day. Compared to the result in the GHz as shown
in Fig. 11, the maximum/minimum RCS value is increased/de-
creased in the THz.

VI. CONCLUSION

This paper presents an adaptive aperture partition algorithm
to solve the ray-tube divergence problem, and also proposes
the kd-tree to accelerate the beam-target intersection. Adaptive
aperture partition is more stable than uniform aperture partition
in the original SBR method and yields the optimal result of the

TAO et al.: ADAPTIVE APERTURE PARTITION IN SHOOTING AND BOUNCING RAY METHOD 3355

Fig. 14. The bistatic RCS result of the pencil at 1 THz.

SBR method. This is because adaptive aperture partition takes
into account the geometry of the target and the generated hit
beams are convergent. In contrast, the result of uniform aperture
partition is sensitive to the boundary of the virtual aperture and
the partition criterion to some extent, and it is also influenced by
the divergent ray tubes for complex targets. Another feature of
adaptive aperture partition is that the aperture partition depends
only on the geometry of the target, and it is insensitive to the in-
cident frequency. Therefore, adaptive aperture partition can sig-
nificantly accelerate the high-resolution range and inverse syn-
thetic aperture radar (ISAR) applications as well as the RCS
prediction in the THz band. Numerical results demonstrate the
accuracy and effectiveness of the proposed algorithm. Further-
more, the beam-target intersection accelerated by the kd-tree
can be adapted to other electromagnetic applications, such as
the radio propagation prediction [10]–[12].

APPENDIX

DIFFERENCES BETWEEN RAY TRAVERSAL AND BEAM

TRAVERSAL IN THE KD-TREE

The other three differences between ray traversal and beam
traversal in the kd-tree are described in detail as follows:

a) The Choice of the Child Node to Traverse: When a
beam encounters an interior node, we first need to choose which
child node to traverse. The near and far child nodes are decided
by the beam’s corners with respect to the splitting plane. If the
corners straddle the splitting plane, the beam’ propagation direc-
tion is taken into account to determine the near and far nodes. It
is not accurate enough to simply use the beam’s corner rays to
determine the traversal order of all rays in the beam [7], [28]. As
illustrated in Fig. 15, all four corner rays of the beam need to tra-
verse the far node only. However, the rays in the beam actually
hit the near node, and the near node should be traversed first.
This problem can be solved by maintaining three
ranges, i.e., one range for each axis, and each range defines the
part of the ray within two bounding planes perpendicular to its
corresponding axis. If distances from the corners to the splitting

Fig. 15. The illustration of the beam traversal. All four corner rays of the beam
need to visit the far node (the back node) only. However, the beam hits the near
node and should traverse the near node firstly.

plane are all further than either of the other axes’ maximum dis-
tances , or all corner rays face away from
the far node only the near node needs to be traversed.
If distances are all less than either of the other axes’ minimum
distances , only the far node needs to be
traversed. Otherwise, both nodes need to be traversed.

b) The Maintenance of the Stack: The ray traversal em-
ploys a node stack as a priority queue of nodes left to visit ac-
cording to how close to the origin of the ray. The ray is not
changed during the ray traversal, but the beam would be split
and gradually generate new beams during the beam traversal. As
a result, besides the node stack, the beam traversal requires an
additional beam stack. The node stack preserves the to-be-vis-
ited tree node and its corresponding beam, and the beam stack
maintains the new generated to-be-processed beam.

c) The Termination Condition of the Traversal: In the ray
traversal, when the ray’s distance to a triangle is less than the
ray’s maximum distance to the node, the intersection is consid-
ered as the nearest intersection along the ray and the traversal
terminates. Likewise, when the corner rays’ distances to the tri-
angle are all less than the corner rays’ maximum distances to
the node in any dimension, the triangle can be guaranteed to
the nearest triangle along the beam and the hit beam can stop
its traversal. Otherwise, the hit beam still needs to traverse the
kd-tree until the entry distance to the next to-be-visited node
in any one axis is larger than the distances to the hit triangle.
The miss beam terminates its traversal after passing through the
target space, i.e., there is no element left in the node stack.

After we discussed the differences between the ray traversal
procedure and the beam traversal procedure, a kd-tree traversal
algorithm for beam tracing is shown in Algorithm 1. It should be
noted that the comparison between and as well as
corresponds to the array comparison of all corner rays. Each
node in the node stack should be traversed by all new generated
beams after the node is pushed into nodeStack. The function
beamTriIntersect deals with the intersection of the beam with
one triangle in the leaf node, and keeps the original beam or
new generated beams if split into stack. All beams in the stack

3356 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 59, NO. 9, SEPTEMBER 2011

should be tested for intersection with the remaining triangles to
find the nearest intersected triangle. Finally, the input beam is
split into a group of beams, and these beams are children beams
of the input beam.

Algorithm 1 Kd-Tree Traversal Algorithm for Beam
Tracing

while and do

// process interior nodes
while do

if or or
then

else if or
then

else

end if
end while

// intersection test with the triangles in the leaf node
stack.push(beam)
for triangle in node.triangles do

for beam in stack do
beamTriIntersect(beam, triangle, stack)

end for
end for
beamStack.push(stack)

// get the next beam and node from the stack
(beam, node) getBeamNode(nodeStack, beamStack)

end while
return beam

ACKNOWLEDGMENT

The authors would like to thank Prof. T. J. Cui from South
East University for providing the MLFMM method used in this
paper.

REFERENCES

[1] H. Ling, R. C. Chow, and S. W. Lee, “Shooting and bouncing rays:
Calculating the RCS of an arbitrarily shaped cavity,” IEEE Trans. An-
tennas Propag., vol. 37, no. 2, pp. 194–205, 1989.

[2] J. Baldauf, S. W. Lee, L. Lin, S. K. Jeng, S. M. Scarborough, and C.
L. Yu, “High frequency scattering from trihedral corner reflectors and
other benchmark targets: SBR vs. experiments,” IEEE Trans. Antennas
Propag., vol. 39, no. 9, pp. 1345–1351, 1991.

[3] C. A. Balanis, Advanced Engineering Electromagnetics. New York:
Wiley, 1989.

[4] M. L. Hastriter and W. C. Chew, “Comparing Xpatch, FISC,
and ScaleME using a cone-cylinder,” in Proc. IEEE Antennas
and Propag. Society Int. Symp., Monterrey, CA, Jun. 2004, vol.
2, pp. 2007–2010.

[5] P. S. Heckbert and P. Hanrahan, “Beam tracing polygonal objects,” in
Proc. SIGGRAPH’84, New York, 1984, pp. 119–127.

[6] D. Ghazonfarpour and J.-M. Hasenfratz, “A beam tracing method with
precise antialiasing for polyhedral scenes,” Comput. Graph., vol. 22,
no. 1, pp. 103–115, 1998.

[7] R. Overbeck, R. Ramamoorthi, and W. R. Mark, “A real-time beam
tracer with application to exact soft shadows,” in Proc. EuroGraphics
Symp. on Rendering, Jun. 2007, pp. 85–98.

[8] T. Funkhouser, I. Carlbom, G. Elko, G. Pingali, M. Sondhi,
and J. West, “A beam tracing approach to acoustic modeling
for interactive virtual environments,” in Proc. SIGGRAPH’98,
New York, 1998, pp. 21–32.

[9] N. Tsingos, T. Funkhouser, A. Ngan, and I. Carlbom, “Modeling acous-
tics in virtual environments using the uniform theory of diffraction,” in
Proc. SIGGRAPH’01, New York, 2001, pp. 545–552.

[10] H.-W. Son and N.-H. Myung, “A deterministic ray tube method for mi-
crocellular wave propagation prediction model,” IEEE Trans. Antennas
Propag., vol. 47, no. 8, pp. 1344–1350, 1999.

[11] P. Bernardi, R. Cicchetti, and O. Testa, “An accurate UTD model
for the analysis of complex indoor radio environments in microwave
WLAN systems,” IEEE Trans. Antennas Propag., vol. 52, no. 6, pp.
1509–1520, 2004.

[12] H. Kim and H. Lee, “Accelerated three dimensional ray tracing tech-
niques using ray frustums for wireless propagation models,” Progress
Electromagn. Res. (PIER), vol. 96, pp. 21–36, 2009.

[13] S. H. Suk, T. I. Seo, H. S. Park, and H. T. Kim, “Multiresolution grid
algorithm in the SBR and its application to the RCS calculation,” Mi-
crow. Opt. Technol. Lett., vol. 29, no. 6, pp. 394–397, 2001.

[14] F. Weinmann, “Ray tracing with PO/PTD for RCS modeling of large
complex objects,” IEEE Trans. Antennas Propag., vol. 54, no. 6, pp.
1797–1806, 2006.

[15] F. Xu and Y.-Q. Jin, “Bidirectional analytic ray tracing for fast com-
putation of composite scattering from electric-large target over a ran-
domly rough surface,” IEEE Trans. Antennas Propag., vol. 57, no. 5,
pp. 1495–1505, 2009.

[16] K. S. Jin, T. I. Suh, S. H. Suk, B. C. Kim, and H. T. Kim, “Fast ray
tracing using a space-division algorithm for RCS prediction,” J. Elec-
tromagn. Waves Applicat., vol. 20, no. 1, pp. 119–126, 2006.

[17] V. Havran, “Heuristic ray shooting algorithms” Ph.D. dissertation,
Univ. of Czech Technical, Prague, Nov. 2000 [Online]. Available:
http://www.cgg.cvut.cz/~havran/phdthesis.html

[18] Y.-B. Tao, H. Lin, and H.-J. Bao, “Kd-tree based fast ray tracing for
RCS prediction,” Progress Electromagn. Res. (PIER), vol. 81, pp.
329–341, 2008.

[19] Y.-B. Tao, H. Lin, and H.-J. Bao, “GPU-based shooting and bouncing
ray method for fast RCS prediction,” IEEE Trans. Antennas Propag.,
vol. 58, no. 2, pp. 494–502, 2010.

[20] D. D. Hearn and M. P. Baker, Computer Graphics With Open GL, 3rd
ed. Englewood Cliffs, NJ: Prentice Hall, 2003.

[21] W. C. Chew, J. M. Jin, E. Michielssen, and J. M. Song, Fast and Ef-
ficient Algorithms in Computational Electromagnetics. Boston, MA:
Artech House, 2001.

[22] M. Pharr and G. Humphreys, Physically Based Rendering: From
Theory to Implementation. San Fransisco, CA: Morgan Kaufmann,
2004.

[23] S.-W. Lee and R. Mittra, “Fourier transform of a polygonal shape func-
tion and its application in electromagnetics,” IEEE Trans. Antennas
Propag., vol. 31, no. 1, pp. 99–103, 1983.

[24] M. L. Hastriter, “A study of MLFMA for large-scale scattering
problems,” Ph.D. dissertation, Univ. of Illinois at Urbana-Champaign,
Champaign, IL, 2003.

[25] P. M. Johansen, “Uniform physical theory of diffraction equivalent
edge currents for truncated wedge strips,” IEEE Trans. Antennas
Propag., vol. 44, no. 7, pp. 989–995, 1996.

[26] J. T. Moore, A. D. Yaghjian, and R. A. Shore, “Shadow boundary
and truncated wedge ILDCs in Xpatch,” in Proc. IEEE Antennas and
Propag. Society Int. Symp., 2005, vol. 1, pp. 10–13.

TAO et al.: ADAPTIVE APERTURE PARTITION IN SHOOTING AND BOUNCING RAY METHOD 3357

[27] Z. Li, T.-J. Cui, X.-J. Zhong, Y.-B. Tao, and H. Lin, “Electromagnetic
scattering characteristics of PRC targets in the terahertz regime,” IEEE
Antennas Propag. Mag., vol. 51, no. 1, pp. 39–50, 2009.

[28] A. Reshetov, A. Soupikov, and J. Hurley, “Multi-level ray tracing al-
gorithm,” ACM Trans. Graph., vol. 24, no. 3, pp. 1176–1185, 2005.

Yubo Tao received the B.S. and Ph.D. degree in
computer science and technology from Zhejiang
University, Hangzhou, China, in 2003 and 2009,
respectively.

He is currently a Postdoctoral Researcher in the
State Key Laboratory of CAD&CG, Zhejiang Uni-
versity. His research interests include computational
electromagnetics and data visualization.

Hai Lin received the B.Sc. and M.Sc. degrees
in electrical engineering from Xidian University,
Xi’an, China, in 1987 and 1990, respectively, and
the Ph.D. degree in computer science from Zhejiang
University, Hangzhou, China, in 2000.

Currently, he is a Professor of visual computing in
the State Key Lab. of CAD&CG, Zhejiang Univer-
sity. He is also a Visiting Professor at the Department
of Computing and Information Systems, University
of Bedfordshire, U.K. His research interests include
computational electromagnetic, computer graphics,

scientific visualization.

Hujun Bao received the B.S. and Ph.D. degrees
in applied mathematics from Zhejiang University,
Hangzhou, China, in 1987 and 1993, respectively.

Currently, he is a Professor and the Director
of State Key Laboratory of CAD&CG, Zhejiang
University. His main research interest is computer
graphics and computer vision, including realtime
rendering technique, geometry computing, virtual
reality and 3D reconstruction.

